Southwest Wisconsin Technical College

Southwest = Tech

Dimensional Analysis in Nursing

Module 1.9

Drug Calculations - Liquid Medicines (Advanced)

Table of Contents

Introduction, page 81
Example 1.9.1, page 82
Example 1.9.2, page 83
Example 1.9.3, page 84
Practice Problems, page 85
Solutions to Practice Problems, page 86

Dimensional Analysis in Nursing

Module 1.9

Drug Calculations - Liquid Medicines (Advanced)

Introduction

In this module you will learn to apply more skills to solve drug calculations involving liquid medicines. The overall game plan is the same as the previous module; convert from doctor's orders (mass) to the amount (volume) measured and given to the patient either by mouth, injection, or IV.

What's New

The scenarios presented here will require more than one computational "step". Some problems will require converting from one metric unit of measure to another, while others might involve converting to a different time frame.

Multiple examples will be offered to illustrate the necessary dimensional analysis skills.

Using Concentration

As before, you will need to use the concentration of the available drug to convert from mass to volume.
A concentration of $150 \mathbf{m g} / \mathrm{mL}$ is treated as the equivalency $150 \mathbf{m g}=1 \mathbf{~ m L}$.

Metric Prefix Chart

Provided below is a portion of the metric prefix chart which can serve as a reference when making metric-to-metric conversions.
kilo hecto deka base deci centi milli | | micro

Example 1.9.1

Prescription: Loading dose of Lanoxin 525 mcg IV
Inventory: Lanoxin $0.25 \mathrm{mg} / \mathrm{mL}$
Quantity to give patient: \qquad (for the loading dose)

The goal in this example is to determine $\boldsymbol{m L}$.
Goal: mL

Step 1 Write doctor's orders in fractional form with a denominator of 1.
Continue Step 1 by writing a multiply symbol (\times) and another fraction bar with the same units of measure in the denominator.

$$
\frac{525 \mathrm{mcg}}{1} \times \frac{}{\mathrm{mcg}}
$$

Goal: mL

Step 2 - The units of measure for the order (mcg) do not match the units of measure for mass in the available drug (mg). Use the conversion, $\mathbf{1} \mathbf{~ m g = 1 0 0 0} \mathbf{~ m c g}$.

$$
\frac{525 \mathrm{mcg}}{1} \times \frac{1 \mathrm{mg}}{1000 \mathrm{mcg}}
$$

Goal: mL

Step 3 - Now that we have milligrams (mg), we can use the drug concentration of $0.25 \mathrm{mg} / \mathrm{mL}$. Think of it as $\mathbf{0 . 2 5} \mathbf{~ m g = 1} \mathbf{~ m L}$.

> In order to cancel-out
> "mg", 0.25 mg must be in the denominator.

Goal: mL
\qquad
\square

Step 4 - The goal of achieving $m L$ has been accomplished. Multiply the numerators together, then multiply the denominators. Finish by dividing numerator by denominator.

$$
\frac{525 \mathrm{mcg}}{1 \text { dose }} \times \frac{1 \mathrm{mg}}{1000 \mathrm{mcg}} \times \frac{1 \mathrm{~mL}}{0.25 \mathrm{mg}}=\frac{525 \mathrm{~mL}}{250}=2.1 \mathrm{~mL}
$$

Example 1.9.2

Prescription: Lyrica 200 mg PO TID
Inventory: Lyrica $20 \mathrm{mg} / \mathrm{mL}$
Determine milliliters per day: \qquad
The goal in this example is to determine $m L$ per day.
Goal: $\frac{m L}{d a y}$
Step 1 Note that the goal contains two measurements. There is both a quantity (milliliters) and time (day).

The doctor has specified 200 mg per dose. 200 mg takes care of the quantity requirement, while dose meets the time requirement since it is associated with time. Note how they are arranged:
$\frac{200 \mathrm{mg}}{1 \text { dose }}$
Goal: $\frac{m L}{d a y}$

Step 2 - We must convert $m g$ to $m L$, so let's start there. Since the available drug is expressed in

$\frac{200 \mathrm{mg}}{1 \text { dose }} \times \frac{1 \mathrm{~mL}}{20 \mathrm{mg}}$
Goal: $\frac{\mathrm{mL}}{\text { day }}$

Step 3 - We have converted $m g$ to $m L$. Now we must convert dose to day. TID is interpreted as "three times per day". Think of it as $\mathbf{3}$ doses $=\mathbf{1}$ day.
$\left.\frac{200 \mathrm{mg}}{1 \text { dose }} \times \frac{1 \mathrm{~mL}}{20 \mathrm{mg}} \times \frac{3 \text { doses }}{1 \text { day }} \longleftarrow \right\rvert\, \begin{aligned} & \text { In order to cancel-out } \\ & \text { "dose", } 3 \text { doses must be } \\ & \text { in the numerator }\end{aligned} \quad$ Goal: $\frac{\mathrm{mL}}{\text { day }}$
Step 4 - Everything is cancelled except for $m L$ and day, which is our goal. Multiply the numerators together, then multiply the denominators. Finish by dividing numerator by denominator.
$\frac{200 \mathrm{mg}}{1 \text { dose }} \times \frac{1 \mathrm{~mL}}{20 \mathrm{mg}} \times \frac{3 \text { doses }}{1 \text { day }}=\frac{600 \mathrm{~mL}}{20 \text { days }}=\mathbf{3 0} \mathbf{~ m L} /$ day

Example 1.9.3

Prescription: Codeine 60 mg PO q4h
Inventory: Codeine $30 \mathrm{mg} / 5 \mathrm{~mL}$
Determine milliliters per day: \qquad
The goal in this example is to determine $m L$ per day.

$$
\text { Goal: } \frac{\mathrm{mL}}{\mathrm{day}}
$$

Step 1 Note that the goal contains two measurements. There is both a quantity (milliliters) and time (day).

The doctor has specified 60 mg per dose. 60 mg takes care of the quantity requirement, while dose (which is associated with time) meets the time requirement. Note how they are arranged:
$\frac{60 \mathrm{mg}}{1 \text { dose }}$
Goal: $\frac{m L}{\text { day }}$

Step 2 - We must convert $m g$ to $m L$, so let's start there. Since the available drug is expressed in mg , we can use can use " $30 \mathrm{mg} / 5 \mathrm{~mL}$ ", interpreted as $\mathbf{3 0} \mathbf{~ m g = 5} \mathbf{~ m L}$.
$\frac{60 \mathrm{mg}}{1 \text { dose }} \times \frac{5 \mathrm{~mL}}{30 \mathrm{mg}}$
Goal: $\frac{\mathrm{mL}}{\text { day }}$

Step 3 - Having converted $m g$ to $m L$, we must now convert dose to day.
Using "q4h" helps towards that goal since it means "a dose every 4 hours". Interpret q4h as $\mathbf{1}$ dose = $\mathbf{4}$ hours. It will not get us directly to days, but we'll be heading in the right direction.

$$
\left.\frac{60 \mathrm{mg}}{1 \text { dose }} \times \frac{5 \mathrm{~mL}}{30 \mathrm{mg}} \times \frac{1 \text { dose }}{4 \text { hours }} \longleftarrow \right\rvert\, \begin{aligned}
& \text { In order to cancel-out } \\
& \text { "dose", } 1 \text { dose must be } \\
& \text { in the numerator }
\end{aligned} \quad \text { Goal: } \frac{\mathrm{mL}}{\text { day }}
$$

Step 4 - We can achieve our goal of $m L$ per day if we next use the equivalency, $\mathbf{1}$ day = $\mathbf{2 4}$ hours. That's the last step. To finish, multiply the numerators together, then multiply the denominators. Finish by dividing numerator by denominator.

$$
\frac{60 \mathrm{mg}}{1 \text { dose }} \times \frac{5 \mathrm{~mL}}{30 \mathrm{mg}} \times \frac{1 \text { dose }}{4 \text { hours }} \times \frac{24 \text { hours }}{1 \text { day }}=\frac{7200 \mathrm{~mL}}{120 \text { days }}=60 \mathrm{~mL} / \text { day }
$$

Practice Problems

Directions - For each problem, use dimensional analysis to determine the quantity of medicine required for the patient. Write your goal in the provided box. Your answers should include the appropriate units of measure.
1.) Prescription: Liothyronine Sodium 0.05 mg IV Inventory: Liothyronine Sodium $10 \mathrm{mcg} / \mathrm{mL}$
Quantity to give patient: \qquad
Goal: \qquad
2.) Prescription: Acetaminophen 1 g IV Inventory: Acetaminophen $120 \mathrm{mg} / 5 \mathrm{~mL}$ Quantity to give patient: \qquad
Goal: \qquad
3.) Prescription: Octreotide 150 mcg SUBCUT BID Inventory: Octreotide $100 \mathrm{mcg} / \mathrm{mL}$
Determine milliliters per day: \qquad Goal: \square
4.) Prescription: Metformin 2 g per day in two divided doses PO Inventory: Metformin $500 \mathrm{mg} / 5 \mathrm{~mL}$ Determine milliliters per day: \qquad Goal: \qquad
5.) Prescription: Ciprofloxacin 0.4 g IV BID Inventory: Ciprofloxacin $500 \mathrm{mg} / 5 \mathrm{~mL}$ Determine milliliters per day: \qquad Goal: \qquad

Solutions to Practice Problems

1.) Prescription: Liothyronine Sodium 0.05 mg IV Inventory: Liothyronine Sodium $10 \mathrm{mcg} / \mathrm{mL}$ Quantity to give patient: \qquad

$$
\frac{0.05 \mathrm{mg}}{1} \times \frac{1000 \mathrm{meg}}{1 \mathrm{mg}} \times \frac{1 \mathrm{~mL}}{10 \mathrm{mgg}}=\frac{50 \mathrm{~mL}}{10}=5 \mathbf{m L}
$$

Goal: mL
2.) Prescription: Acetaminophen 1 g IV Inventory: Acetaminophen $120 \mathrm{mg} / 5 \mathrm{~mL}$ Quantity to give patient: \qquad

$$
\frac{1 g}{1} \times \frac{1000 \mathrm{mg}}{1 \mathrm{~g}} \times \frac{5 \mathrm{~mL}}{120 \mathrm{mg}}=\frac{5000 \mathrm{~mL}}{120}=41.7 \mathrm{~mL}
$$

Goal: mL
3.) Prescription: Octreotide 150 mcg SUBCUT BID Inventory: Octreotide $100 \mathrm{mcg} / \mathrm{mL}$ Determine milliliters per day: \qquad

$$
\frac{150 \mathrm{meg}}{1 \text { dose }} \times \frac{1 \mathrm{~mL}}{100 \mathrm{meg}} \times \frac{2 \text { doses }}{1 \text { day }}=\frac{300 \mathrm{~mL}}{100 \text { days }}=3 \mathrm{~mL} \text { per day }
$$

Goal: mL/day
4.) Prescription: Metformin 2 g per day in two divided doses PO Inventory: Metformin $500 \mathrm{mg} / 5 \mathrm{~mL}$ Determine milliliters per day: \qquad

$$
\frac{2 \mathrm{~g}}{1 \text { day }} \times \frac{1000 \mathrm{mg}}{1 \mathrm{~g}} \times \frac{5 \mathrm{~mL}}{500 \mathrm{mg}}=\frac{10000 \mathrm{~mL}}{500 \text { days }}=20 \mathrm{~mL} \text { per day }
$$

Goal: mL/day
5.) Prescription: Ciprofloxacin 0.4 g IV BID Inventory: Ciprofloxacin $500 \mathrm{mg} / 5 \mathrm{~mL}$ Determine milliliters per day: \qquad

$$
\frac{0.4 g}{1 \text { dose }} \times \frac{1000 \mathrm{mg}}{1 g} \times \frac{5 \mathrm{~mL}}{500 \mathrm{mg}} \times \frac{2 \text { doses }}{1 \text { day }}=\frac{4000 \mathrm{~mL}}{500 \text { days }}=\mathbf{8} \mathbf{~ m L} \text { per day }
$$

