Southwest Wisconsin Technical College

Southwest on Tech

Dimensional Analysis in Nursing

Module 1.11

Drug Calculations - Flow Rate (IV Drip Infusion)

- Table of Contents

Introduction, page 98
Example 1.11.1, page 99
Example 1.11.2, page 100
Example 1.11.3, page 101
Example 1.11.4, page 102

Practice Problems, pages 103-105
Solutions to Practice Problems, pages 105-107

Noteworthy

- IV drip infusion flow rates must be communicated as $\frac{d r o p s}{m i n u t e}$.
- In order to end up with a flow rate, you need to start with a flow rate*.
*Or something close...see problems 1.11.3, and 1.11.4

[^0]
Dimensional Analysis in Nursing

Module 1.11

Drug Calculations - Flow Rate (IV Drip Infusion)

Introduction

In this module you will work with situations where liquid-based medicines or nutrients are delivered intravenously to a patient over a period of time.

Drip Infusion

The device most often used to do this job is called an infusion pump, however there are situations where drip infusion is used. Drip infusion relies on gravity instead of an electronic device to deliver a steady, predictable flow of medicine.

Tubing Sets

Various IV tubing sets are available and they are identified by their drop factor.

The drop factor communicates how many drops per milliliter (gtts $/ \mathrm{mL}$) you should expect when that particular tubing is selected. For example, macro IV tubing sets are available in 10,15 , or $20 \mathrm{gtts} / \mathrm{mL}$ sizes. Micro IV tubing sets are $60 \mathrm{gtts} / \mathrm{mL}$.

The drop factor must be known in order for you to solve flow rate problems involving traditional IVs (drip infusion).

Flow Rate

The goal in any flow rate problem involving drip infusion is to determine drops per minute.
Regulating the correct drops per minute is accomplished by the use of a plastic roller clamp. The number of drops per minute can be determine by counting the drops occurring in the drip chamber. [See the illustration above.]

Abbreviations

From the discussion above you likely noted that $g t t s$ is the abbreviation for drops, while $g t t$ is the abbreviation for drop. The abbreviation gtt comes from the Latin word "guttae" which means drop.

Example 1.11.1

200 mL of aminophylline is to be delivered IV by drip infusion over the next 2 hours. The tubing drop factor is 15 drops per milliliter ($15 \mathrm{gtts} / \mathrm{mL}$). Determine the correct flow rate expressed in drops per minute (gtts/min).

Your goal is to determine drops per minute:

$$
\text { Goal: } \frac{\text { gtts }}{\min }
$$

Step 1 You are looking to compute a flow rate. Flow rates are always in the arrangement of volume over time (volume/time). You will need to start this problem with information as close as possible to the flow rate goal of drops per minute.

We will use 200 mL for the volume, and 2 hours for the time.

volume

Step 2 Part of our goal is to have drops, not milliliters. The information that lets us make that change is the drop factor of $15 \mathrm{gtts} / \mathrm{mL}$, which can be thought of as this equivalency; $15 \mathrm{gtts}=1 \mathrm{~mL}$

After writing a multiplication symbol and a fraction bar, we'll put 1 mL in the denominator to force milliliters to cancel. 15 gtts will go in the numerator.
$\frac{200 \mathrm{~mL}}{2 \text { hours }} \times \frac{15 \mathrm{gtts}}{1 \mathrm{~mL}}$
Goal: $\frac{\mathrm{gtts}}{\min }$

Step 3 The other part of our goal is to have minutes. Use the equivalency of 1 hour $=60$ minutes. 1 hour will go in the next numerator in order to cancel out hours.
$\frac{200 \mathrm{~mL}}{2 \text { hours }} \times \frac{15 \mathrm{gtts}}{1 \mathrm{~mL}} \times \frac{1 \text { hour }}{60 \text { minutes }}$
Goal: $\frac{\mathrm{gtts}}{\mathrm{min}}$

Step 4 We now have the correct units of measure in the correct location; g tts in the numerator and minutes in the denominator. Multiply the numerators together, then the denominators. Divide to finish. The final answer should be expressed to the nearest whole number.
$\frac{200 \mathrm{~mL}}{2 \text { houlrs }} \times \frac{15 \mathrm{gtts}}{1 \mathrm{~mL}} \times \frac{1 \mathrm{hour}}{60 \text { minutes }}=\frac{3,000 \mathrm{gtts}}{120 \text { minutes }}=\mathbf{2 5} \mathbf{g t t s}$ per minute

Example 1.11.2

100 mL of dopamine is to be infused IV drip infusion over the next 90 minutes. The tubing drop factor is 20 drops per milliliter ($20 \mathrm{gtts} / \mathrm{mL}$). Determine the correct flow rate expressed in drops per minute (gtts/min).

Your goal is to determine drops per minute:
Goal: $\frac{\text { gtts }}{\min }$

Step 1 Flow rates are always in the arrangement of volume over time (volume/time). You will need to start this problem with information as close as possible to the flow rate goal of drops per minute.

We will use 100 mL for the volume, and 90 minutes for the time.

volume

time
Goal: $\frac{\mathrm{gtts}}{\min }$

Step 2 Let's use the drop factor of $20 \mathrm{gtts} / \mathrm{mL}(20 \mathrm{gtts}=1 \mathrm{~mL})$ to convert milliliters to drops.
$\frac{100 \mathrm{~mL}}{90 \mathrm{~min}} \times \frac{20 \mathrm{gtts}}{1 \mathrm{~mL}}$
Goal: $\frac{\text { gtts }}{\text { min }}$

Step 3 We now have the correct units of measure to communicate the drip infusion flow rate; gtts and minutes. Multiply the numerators, then denominators. Divide to finish, expressing your answer to the nearest whole number.
$\frac{100 \mathrm{~mL}}{90 \mathrm{~min}} \times \frac{20 \mathrm{gtts}}{1 \mathrm{~mL}}=\frac{2,000 \text { gtts }}{90 \text { minutes }}=22$ gtts per minute

Example 1.11.3

Heparin is to be infused at a rate of 1,500 units per hour continuously by IV drip infusion. Available is Heparin 5,000 units/ 250 mL . The tubing drop factor is 10 drops per milliliter ($10 \mathrm{gtts} / \mathrm{mL}$). Determine the correct flow rate expressed in drops per minute (gtts/min).

Your goal is to determine drops per minute: Goal: $\frac{\text { gtts }}{\mathrm{min}}$

Step 1 You will need to start this problem with information as close as possible to the flow rate goal of drops per minute.

We are given an initial rate of 1,500 units per hour. Let's start with that.

quantity

$$
\text { Goal: } \frac{\text { gtts }}{\min }
$$

Step 2 We need to replace units with gtts. Before we can use the drop factor of $10 \mathrm{gtts} / \mathrm{mL}$, we first need to convert units to milliliters. We'll use the drug concentration of 5,000 units/250 mL to accomplish this.
$\frac{1,500 \text { units }}{1 \text { hour }} \times \frac{250 \mathrm{~mL}}{5,000 \text { units }}$
Goal: $\frac{\text { gtts }}{\min }$

Step 3 Now we can use the drop factor of $10 \mathrm{gtts} / \mathrm{mL}$ convert milliliters to gtts.
$\frac{1,500 \text { units }}{1 \text { hour }} \times \frac{250 \mathrm{~mL}}{5,000 \text { units }} \times \frac{10 \mathrm{gtts}}{1 \mathrm{~mL}}$
Goal: $\frac{\text { gtts }}{\text { min }}$

Step 4 The other part of our goal is to have minutes. Use the equivalency of 1 hour $=60$ minutes.
$\frac{1,500 \text { units }}{1 \text { hour }} \times \frac{250 \mathrm{~mL}}{5,000 \text { units }} \times \frac{10 \text { gtts }}{1 \mathrm{~m} t} \times \frac{1 \text { hour }}{60 \text { minutes }}$

$$
\text { Goal: } \frac{\text { gtts }}{\min }
$$

Step 5 Finish by multiplying the numerators together, then the denominators. Divide to finish. Your answer should be expressed to the nearest whole number.
$\frac{1,500 \text { units }}{1 \text { hour }} \times \frac{250 \mathrm{~mL}}{5,000 \text { units }} \times \frac{10 \text { gtts }}{1 \mathrm{~mL}} \times \frac{1 \text { hour }}{60 \text { minutes }}=\frac{3,750,00 \text { gtts }}{300,000 \text { minutes }}=\mathbf{1 3}$ gtts per min

Example 1.11.4

500 mg of Vancomycin is to be infused IV drip infusion over 45 minutes. The tubing set has a drop factor of $20 \mathrm{gtts} / \mathrm{mL}$. Available is a Vancomycin with a concentration of $750 \mathrm{mg} / 150 \mathrm{~mL}-\mathrm{D} 5 \%$.

Determine the correct flow rate expressed in drops per minute (gtts/min).

$$
\text { Goal: } \frac{\text { gtts }}{\min }
$$

Step 1 Since no initial volume is communicated, we will instead start with a quantity of drug and a time. The closest we can get to the goal of drops per minute (gtts/min) is to put 500 mg in the numerator and 45 minutes in the denominator.

45 minutes

Step 2 - Milligrams will need to be replaced since gtts are required for the numerator. Before using the drop factor of $20 \mathrm{gtts} / \mathrm{mL}$, we will first need to convert milligrams to milliliters. This can be accomplished by using the drug concentration of $750 \mathrm{mg} / 150 \mathrm{~mL}$.

Note that 750 mg must be written in the denominator so that milligrams cancel-out.
$\frac{500 \mathrm{mg}}{45 \text { minutes }} \times \frac{150 \mathrm{~mL}}{750 \mathrm{mg}}$
Goal: $\frac{\mathrm{gtts}}{\mathrm{min}}$

Step 3 - Now the drop factor of $20 \mathrm{gtts} / \mathrm{mL}$ can be used to convert milliliters to drops.
$\frac{500 \mathrm{mg}}{45 \text { minutes }} \times \frac{150 \mathrm{~mL}}{750 \mathrm{mg}} \times \frac{20 \mathrm{gtts}}{1 \mathrm{~mL}}$
Goal: $\frac{\mathrm{gtts}}{\mathrm{min}}$

Step 4 - Since we now have the required units of measure (gtts and minutes), multiply the numerators together, and then the denominators. Finish by dividing numerator by denominator.
$\frac{500 \mathrm{mg}}{45 \text { minutes }} \times \frac{150 \mathrm{~mL}}{750 \mathrm{mg}} \times \frac{20 \mathrm{gtts}}{1 \mathrm{mt}}=\frac{1,500,000 \mathrm{gtts}}{33,750 \text { minutes }}=\mathbf{4 4}$ drops per minute

Practice Problems

Directions - For each problem, use dimensional analysis to determine the flow rate in drops per minute. Your answers should be include the appropriate units of measure and be rounded to the nearest whole number.
1.) 100 mL of dopamine IV drip infusion over the next 3 hours is ordered. The tubing set drop factor is $10 \mathrm{gtts} / \mathrm{mL}$.

Goal: gtts/min

The correct drip infusion flow rate is \qquad gtts/min.
2.) A patient is ordered 250 mL of Aminophylline IV drip infusion over the next 6 hours. The tubing set drop factor is $20 \mathrm{gtts} / \mathrm{mL}$.

The correct drip infusion flow rate is \qquad gtts/min.
3.) Doctor's orders are for 0.75 liters of NS IV drip infusion over 8 hours. The drop factor for the tubing set used is $15 \mathrm{gtts} / \mathrm{mL}$.

Goal: gtts/min
The correct drip infusion flow rate is \qquad gtts/min.
4.) Doctor's orders are for 0.5 L of D5W IV over 4 hours. The drop factor is $10 \mathrm{gtts} / \mathrm{mL}$.

Goal: gtts/min
The correct drip infusion flow rate is \qquad gtts/min.
5.) Order: 30 mL of Dobutrex IV drip infusion over the next 90 minutes. Tubing set available is a micro drip version which is $60 \mathrm{gtts} / \mathrm{mL}$.

The correct drip infusion flow rate is \qquad gtts/min.
6.) Order: 200 mg of Cisplatin IV drip infusion over 6 hours. Drop factor is $15 \mathrm{gtts} / \mathrm{mL}$. Available is a Cisplatin with a concentration of $1 \mathrm{mg} / \mathrm{mL}$.

The correct drip infusion flow rate is \qquad gtts/min.
7.) Order: 300 mg of Gentamicin IV drip infusion over 3 hours. Drop factor is $20 \mathrm{gtts} / \mathrm{mL}$. Available is Gentamicin $80 \mathrm{mg} / 100 \mathrm{~mL}-0.9 \%$.

The correct drip infusion flow rate is \qquad gtts/min.
8.) 500 mg of Gentamicin IV by drip infusion is to be infused over 90 minutes. Drop factor is $10 \mathrm{gtts} / \mathrm{mL}$. Available is Gentamicin $100 \mathrm{mg} / 100 \mathrm{~mL}-0.9 \%$.

The correct drip infusion flow rate is \qquad gtts/min.
9.) Doctor's orders are for 45 mg of Dopamine per hour, continuous IV drip infusion. Available is Dopamine $800 \mathrm{mcg} / \mathrm{mL}$ - D5\%. Drop factor is $10 \mathrm{gtts} / \mathrm{mL}$. The correct drip infusion flow rate is -

The correct drip infusion flow rate is \qquad gtts/min.
10.) Order: 2.0 g of Aminophylline IV by drip infusion to be infused over the next 4 hours.

Available is Aminophylline $105 \mathrm{mg} / 5 \mathrm{~mL}$. Drop factor is $60 \mathrm{gtts} / \mathrm{mL}$.
The correct drip infusion flow rate is \qquad $\mathrm{gtts} / \mathrm{min}$.

Solutions to Practice Problems

1.) 100 mL of dopamine IV drip infusion over the next 3 hours is ordered. The tubing set drop factor is $10 \mathrm{gtts} / \mathrm{mL}$.

Goal: gtts/min

The correct drip infusion flow rate is \qquad gtts/min.
$\frac{100 \mathrm{~mL}}{3 \text { hours }} \times \frac{10 \mathrm{gtts}}{1 \mathrm{~mL}} \times \frac{1 \mathrm{hour}}{60 \text { minutes }}=\frac{1,000 \mathrm{gtts}}{180 \text { minutes }}=6 \mathbf{g t t s}$ per minute
2.) A patient is ordered 250 mL of Aminophylline IV drip infusion over the next 6 hours. The tubing set drop factor is $20 \mathrm{gtts} / \mathrm{mL}$.

Goal: gtts/min

The correct drip infusion flow rate is \qquad gtts/min.
$\frac{250 \mathrm{~mL}}{6 \text { hours }} \times \frac{20 \mathrm{gtts}}{1 \mathrm{~mL}} \times \frac{1 \text { hourr }}{60 \text { minutes }}=\frac{5,000 \mathrm{gtts}}{360 \text { minutes }}=\mathbf{1 4} \mathbf{g t t s}$ per minute
3.) Doctor's orders are for 0.75 liters of NS IV drip infusion over 8 hours. The drop factor for the tubing set used is $15 \mathrm{gtts} / \mathrm{mL}$.

Goal: gtts/min
The correct drip infusion flow rate is \qquad gtts/min.
$\frac{0.75 \mathrm{~L}}{8 \text { hours }} \times \frac{1000 \mathrm{~m} K}{1 \mathrm{~L}} \times \frac{15 \mathrm{gtts}}{1 \mathrm{~m} Z} \times \frac{1 \text { hour }}{60 \text { minutes }}=\frac{11,250 \mathrm{gtts}}{480 \text { minutes }}=23 \mathrm{gtts}$ per minute
4.) Doctor's orders are for 0.5 L of D5W IV over 4 hours. The drop factor is $10 \mathrm{gtts} / \mathrm{mL}$.

Goal: gtts/min The correct drip infusion flow rate is \qquad gtts/min.
$\frac{0.5 \mathrm{~L}}{4 \text { hotrs }} \times \frac{1000 \mathrm{~m} \not}{1 \mathrm{~K}} \times \frac{10 \mathrm{gtts}}{1 \mathrm{~m} \ell} \times \frac{1 \mathrm{hg} \mathrm{tr}}{60 \text { minutes }}=\frac{5,000 \mathrm{gtts}}{240 \text { minutes }}=\mathbf{2 1} \mathrm{gtts}$ per minute
5.) Order: 30 mL of Dobutrex IV drip infusion over the next 90 minutes. Tubing set available is a micro drip version which is $60 \mathrm{gtts} / \mathrm{mL}$.

Goal: gtts/min

The correct drip infusion flow rate is \qquad gtts/min.
$\frac{30 \mathrm{~mL}}{90 \text { minutes }} \times \frac{60 \mathrm{gtts}}{1 \mathrm{~mL}}=\frac{1,800 \mathrm{gtts}}{90 \text { minutes }}=\mathbf{2 0} \mathbf{g t t s}$ per minute
6.) Order: 200 mg of Cisplatin IV drip infusion over 6 hours. Drop factor is $15 \mathrm{gtts} / \mathrm{mL}$. Available is a Cisplatin with a concentration of $1 \mathrm{mg} / \mathrm{mL}$.

The correct drip infusion flow rate is \qquad $\mathrm{gtts} / \mathrm{min}$.
$\frac{200 \mathrm{mg}}{6 \text { hoy } 1 \mathrm{rs}} \times \frac{1 \mathrm{~m} \nmid}{1 \mathrm{mg}} \times \frac{15 \mathrm{gtts}}{1 \mathrm{~m} \ell} \times \frac{1 \mathrm{~h} \text { hur }}{60 \text { minutes }}=\frac{3,000 \mathrm{gtts}}{360 \text { minutes }}=\mathbf{8}$ gtts per minute
7.) Order: 300 mg of Gentamicin IV drip infusion over 3 hours. Drop factor is $20 \mathrm{gtts} / \mathrm{mL}$. Available is Gentamicin $80 \mathrm{mg} / 100 \mathrm{~mL}-0.9 \%$.

Goal: gtts/min

The correct drip infusion flow rate is \qquad gtts/min.
$\frac{300 \mathrm{mg}}{3 \text { hours }} \times \frac{100 \mathrm{~m} \ell}{80 \mathrm{mg}} \times \frac{20 \mathrm{gtts}}{1 \mathrm{~m} \ell} \times \frac{1 \text { hotr }}{60 \text { minutes }}=\frac{600,000 \mathrm{gtts}}{14,400 \text { minutes }}=42 \mathrm{gtts}$ per minute
8.) 500 mg of Gentamicin IV by drip infusion is to be infused over 90 minutes. Drop factor is

The correct drip infusion flow rate is \qquad gtts/min.
$\frac{500 \mathrm{mg}}{90 \text { minutes }} \times \frac{100 \mathrm{~m} \not}{100 \mathrm{mg}} \times \frac{10 \mathrm{gtts}}{1 \mathrm{~m} \ell}=\frac{500,000 \text { gtts }}{9,000 \text { minutes }}=56$ gtts per minute
9.) Doctor's orders are for 45 mg of Dopamine per hour, continuous IV drip infusion.

Goal: gtts/min Available is Dopamine $800 \mathrm{mcg} / \mathrm{mL}$ - D5\%. Drop factor is $10 \mathrm{gtts} / \mathrm{mL}$.

The correct drip infusion flow rate is \qquad gtts/min.
$\frac{45 \mathrm{mg}}{1 \text { hour }} \times \frac{1000 \mathrm{meg}}{1 \mathrm{mg}} \times \frac{1 \mathrm{~m} \not}{800 \mathrm{meg}} \times \frac{10 \mathrm{gtts}}{1 \mathrm{~mL}} \times \frac{1 \text { hour }}{60 \text { minutes }}=\frac{450,000 \mathrm{gtts}}{48,000 \text { minutes }}=\mathbf{9}$ gtts per minute
10.) Order: 2.0 g of Aminophylline IV by drip infusion to be infused over the next 4 hours.

Available is Aminophylline $105 \mathrm{mg} / 5 \mathrm{~mL}$. Drop factor is $60 \mathrm{gtts} / \mathrm{mL}$.
Goal: gtts/min

The correct drip infusion flow rate is \qquad gtts/min.

$$
\frac{2.0 \mathrm{~g}}{4 \text { hours }} \times \frac{1000 \mathrm{mg}}{1 \mathrm{~g}} \times \frac{5 \mathrm{~mL}}{105 \mathrm{mg}} \times \frac{60 \mathrm{gtts}}{1 \mathrm{~mL}} \times \frac{1 \text { hour }}{60 \text { minutes }}=\frac{600,000 \mathrm{gtts}}{25,200 \text { minutes }}=\mathbf{2 4} \text { gtts per minute }
$$

[^0]: Pete Esser
 Knox Learning Center Mathematics Instructor
 Contact: pesser@swtc.edu

