Southwest Wisconsin Technical College

Southwest = Tech

Dimensional Analysis in Nursing

Module 1.8

Drug Calculations - Liquid Medicines

Table of Contents

Introduction, page 71
Example 1.8.1, page 72
Example 1.8.2, page 73
Example 1.8.3, page 74
Example 1.8.4, page 75
Practice Problems, pages 76 and 77
Solutions to Practice Problems, pages 77 through 79

Pete Esser

Knox Learning Center Mathematics Instructor
Contact: pesser@swtc.edu

Dimensional Analysis in Nursing

Module 1.8

Drug Calculations - Liquid Medicines

Introduction

Now that you have had some practice performing drug calculations involving tablets and capsules, let's work with some liquid medicines.

As before, you will start with doctor's orders. The orders are usually expressed as a mass (milligrams, grams, etc.) but the drug itself is in liquid form. So as a nurse, you will need to know the volume to give the patient (milliliters, fluid ounces, teaspoons, tablespoons, etc.).

Concentration

Liquid drugs are described by their concentration. Concentration communicates the quantity of drug present in a specific volume of solution.

You can find the concentration of a drug on the product label:

The concentration for Ceclor is 250 mg per 5 mL .
This means there are 250 mg of Ceclor in 5 mL of solution (liquid).

Other examples...

Concentration	What it means:	Equivalency*
$5 \mathrm{mg} / 2 \mathrm{~mL}$	5 mg of medicine in 2 mL of solution (liquid)	$5 \mathrm{mg}=2 \mathrm{~mL}$
$10 \mathrm{mg} / \mathrm{mL}$	10 mg of medicine in 1 mL of solution	$10 \mathrm{mg}=1 \mathrm{~mL}$
25,000 units $/ 5 \mathrm{~mL}$	25,000 units of medicine in 5 mL	25,000 units $=5 \mathrm{~mL}$

* True only for the particular drug you are working with at the moment.

Using Concentration

The concentration of a drug is used for converting from mass to volume.
When you see a concentration such as $250 \mathrm{mg} / 5 \mathrm{~mL}$ regard it as an equivalency; $\mathbf{2 5 0} \mathbf{~ m g = 5} \mathbf{~ m L}$. Use it like any other equivalency when using dimensional analysis to solve a problem.

Example 1.8.1

Prescription: Dilantin 50 mg per dose
Inventory: Dilantin 125 mg/mL
Quantity to give patient: \qquad per dose

What is the goal in this problem?

There are no specific directions about the units of measure required for the answer.
To answer this, start here; the drug available in inventory must be a liquid because it is identified by its concentration of $125 \mathrm{mg} / \mathrm{mL}$.

Since the drug concentration volume is $\boldsymbol{m L}$ (milliliters) that will be our goal.

Step 1 - Write doctor's orders in fractional form with a denominator of 1.
Continue Step 1 by writing a multiply symbol (\times) and another fraction bar with the same units of

Doctor's Orders

 measure in the denominator.

Goal: mL

Step 2 - Since the concentration of the medicine has the same units of mass as doctor's orders, we can use that to convert from $m g$ to $m L$. Think of " $125 \mathrm{mg} / \mathrm{mL}$ " as $\mathbf{1 2 5} \mathbf{~ m g}=\mathbf{1} \mathbf{~ m L}$. Having prewritten $m g$ in Step 1 helps locate the information correctly.

Showing cancellation is good form. Make this a habit!

Goal: mL

Step 3 - We can compute the answer since $m L$ is the only unit of measure remaining and it matches our goal. Solve by multiplying the numerators together, then multiplying the denominators. Finish by dividing numerator by denominator.
$\frac{50 \mathrm{mg}}{1} \times \frac{1 \mathrm{~mL}}{125 \mathrm{mg}}=\frac{50 \mathrm{~mL}}{125}=0.4 \mathrm{~mL}$

Answer!

Example 1.8.2

Prescription: Neurontin 300 mg PO BID
Inventory: Neurontin $250 \mathrm{mg} / 5 \mathrm{~mL}$
Quantity to give patient: \qquad per dose

NOTE: In the prescription, the abbreviation PO means "by mouth" or "orally". BID means "twice a day".
The goal is milliliters (mL) since that is the unit of measure for volume used in the concentration of Neurontin; $250 \mathrm{mg} / 5 \mathrm{~mL}$.

Step 1 - Write doctor's orders in fractional form with a denominator of 1.
Continue Step 1 by writing a multiply symbol (\times) and another fraction bar with the same units of

Doctor's Orders

 measure in the denominator.

> Writing mg in the denominator guarantees that mg will get cancelled-out.

Goal: mL

Step 2 - Since the concentration of the medicine has the same units of mass as doctor's orders, we can use that to convert from $\mathbf{m g}$ to $m L$. Think of " $250 \mathrm{mg} / 5 \mathrm{~mL}$ " as $\mathbf{2 5 0} \mathbf{~ m g}=\mathbf{5} \mathbf{~ m L}$.
$\frac{300 \mathrm{mg}}{1} \times \frac{5 \mathrm{~mL}}{250 \mathrm{mg}}$
Goal: mL

Step 3 - We can compute the answer since $m L$ is the only unit of measure remaining and it matches our goal. Solve by multiplying the numerators together, then multiplying the denominators. Finish by dividing numerator by denominator.
$\frac{300 \mathrm{mg}}{1} \times \frac{5 \mathrm{~mL}}{250 \mathrm{mg}}=\frac{1500 \mathrm{~mL}}{250}=6 \mathrm{~mL}$

Example 1.8.3

Prescription: Tetracycline Syrup 375 mg
Inventory: Tetracycline Syrup 125 mg/teaspoon
Quantity to give patient: \qquad per dose

Note the volume unit of measure used in communicating the concentration of the Tetracycline Syrup is teaspoon. That indicates our goal should be teaspoon(s).

Step 1 - Write doctor's orders in fractional form with a denominator of 1.
Continue Step 1 by writing a multiply symbol (\times) and another fraction bar with the same units of

Doctor's Orders

measure in the denominator.

Writing mg in the denominator guarantees that mg will get cancelled-out.

Step 2 - The concentration of the medicine has the same units of mass as doctor's orders, so we can convert from mg to teaspoons right away.
Think of "125 mg/teaspoon" as $\mathbf{1 2 5} \mathbf{~ m g = 1}$ teaspoon.
$\frac{375 \mathrm{mg}}{1} \times \frac{1 \text { teaspoon }}{125 \mathrm{mg}}$
Goal: teaspoons

Step 3 - We can compute the answer since teaspoons is the only unit of measure remaining and it matches our goal. Solve by multiplying the numerators together, then multiplying the denominators. Finish by dividing numerator by denominator.
$\frac{375 \mathrm{mg}}{1} \times \frac{1 \text { teaspoon }}{125 \mathrm{mg}}=\frac{375 \text { teaspoon }}{125}=\mathbf{3}$ teaspoons

Example 1.8.4

Prescription: Gentamicin 75 mg IM*
Inventory: Gentamicin $40 \mathrm{mg} / \mathrm{mL}$
To prepare for the injection, you will need to draw-up \qquad mL (nearest tenth) in the syringe.
*IM refers to intramuscular injection.
The goal is $m L$ (milliliters) since the drug concentration volume is milliliters.

Step 1 - Write doctor's orders in fractional form with a denominator of 1.
Continue Step 1 by writing a multiply symbol $(\times$) and another fraction bar with the same units of
measure in the denominator.

Goal: mL

Step 2 - Since the concentration of the medicine has the same units of mass as doctor's orders, we can use that to convert from mg to mL . Think of " $40 \mathrm{mg} / \mathrm{mL}^{\prime}$ " as $\mathbf{4 0} \mathbf{~ m g}=\mathbf{1 m L}$.
$\frac{75 \mathrm{mg}}{1} \times \frac{1 \mathrm{~mL}}{40 \mathrm{mg}}$
Goal: mL

Step 3 - We can compute the answer since $m L$ is the only unit of measure remaining and it matches our goal. Solve by multiplying the numerators together, then multiplying the denominators. Finish by dividing numerator by denominator.
$\frac{75 \mathrm{mg}}{1} \times \frac{1 \mathrm{~mL}}{40 \mathrm{mg}}=\frac{75 \mathrm{~mL}}{40}=1.875 \mathrm{~mL}=1.9 \mathrm{~mL}$ (rounded to nearest tenth)

This arrow shows the location of 1.9 mL on the syringe.

Practice Problems

Directions - For each problem, use dimensional analysis to determine the quantity of medicine required for the patient. Write your goal in the provided box. Your answers should include the appropriate units of measure.
1.) Prescription: Diphenhydramine 50 mg PO BID Inventory: Diphenhydramine $12.5 \mathrm{mg} / 5 \mathrm{~mL}$ Quantity to give patient: \qquad per dose

Goal:

\qquad
2.) Prescription: Penicillin $1,500,000$ units Inventory: Penicillin suspension 500,000 units/5 mL

Quantity to give patient: \qquad per dose

Goal: \qquad

Goal:

4.) Prescription: Methotrexate 15 mg once per week Inventory: Methotrexate $2.5 \mathrm{mg} / \mathrm{mL}$ Quantity to give patient: \qquad per dose

Goal:

5.) Prescription: Morphine 10 mg PO QID Inventory: Morphine $40 \mathrm{mg} / 2 \mathrm{~mL}$ Quantity to give patient: \qquad per dose

Goal:

Goal: \qquad
7.) Prescription: Magnesium Hydroxide Oral Liquid 800 mg QID Inventory: Magnesium Hydroxide Oral Liquid 400 mg/teaspoon

Goal: per dose
8.) Prescription: Clindamycin 600 mg IM twice a day. Inventory: Clindamycin 150 mg/mL
To prepare for the injection, you will need to draw-up \qquad mL (nearest tenth) in the syringe.

Solutions to Practice Problems

1.) Prescription: Diphenhydramine 50 mg PO BID Inventory: Diphenhydramine $12.5 \mathrm{mg} / 5 \mathrm{~mL}$
Quantity to give patient: \qquad per dose

Goal: mL
$\frac{50 \mathrm{mg}}{1} \times \frac{5 \mathrm{~mL}}{12.5 \mathrm{mg}}=\frac{250 \mathrm{~mL}}{12.5}=\mathbf{2 0} \mathbf{~ m L}$
2.) Prescription: Penicillin $1,500,000$ units Inventory: Penicillin suspension 500,000 units/5 mL Quantity to give patient: \qquad per dose
$\frac{1,500,000 \text { units }}{1} \times \frac{5 \mathrm{~mL}}{500,000 \text { units }}=\frac{7,500,000 \mathrm{~mL}}{500,000}=15 \mathbf{~ m L}$
Goal: mL
3.) Prescription: Indomethacin 75 mg PO QID Inventory: Indomethacin $25 \mathrm{mg} / \mathrm{mL}$ Quantity to give patient: \qquad per dose
$\frac{75 \mathrm{mg}}{1} \times \frac{1 \mathrm{~mL}}{25 \mathrm{mg}}=\frac{75 \mathrm{~mL}}{25}=\mathbf{3} \mathbf{m L}$
4.) Prescription: Methotrexate 15 mg once per week Inventory: Methotrexate $2.5 \mathrm{mg} / \mathrm{mL}$ Quantity to give patient: \qquad per dose
$\frac{15 \mathrm{mg}}{1} \times \frac{1 \mathrm{~mL}}{2.5 \mathrm{mg}}=\frac{15 \mathrm{~mL}}{2.5}=6 \mathbf{m L}$
Goal: mL
5.) Prescription: Morphine 10 mg PO QID Inventory: Morphine $40 \mathrm{mg} / 2 \mathrm{~mL}$ Quantity to give patient: \qquad per dose
$\frac{10 \mathrm{mg}}{1} \times \frac{2 \mathrm{~mL}}{40 \mathrm{mg}}=\frac{20 \mathrm{~mL}}{40}=0.5 \mathrm{~mL}$
Goal: mL
6.) Prescription: Potassium Chloride 40 mEq Inventory: Potassium Chloride $20 \mathrm{mEq} / 10 \mathrm{~mL}$ Quantity to give patient: \qquad per dose
$\frac{40 \mathrm{mEq}}{1} \times \frac{10 \mathrm{~mL}}{20 \mathrm{mEq}}=\frac{400 \mathrm{~mL}}{20}=\mathbf{2 0} \mathbf{~ m L}$
Goal: mL
7.) Prescription: Magnesium Hydroxide Oral Liquid 800 mg QID Inventory: Magnesium Hydroxide Oral Liquid 400 mg/teaspoon Quantity to give patient: \qquad per dose
$\frac{800 \mathrm{mg}}{1} \times \frac{1 \text { teaspoon }}{400 \mathrm{mg}}=\frac{800 \text { teaspoons }}{400}=2$ teaspoons

Goal: teaspoons
8.) Prescription: Clindamycin 600 mg IM twice a day. Inventory: Clindamycin 150 mg/mL
To prepare for the injection, you will need to draw-up \qquad mL (nearest tenth) in the syringe.
$\frac{600 \mathrm{mg}}{1} \times \frac{1 \mathrm{~mL}}{150 \mathrm{mg}}=\frac{600 \mathrm{~mL}}{150}=4 \mathrm{~mL}$ must be drawn - up in the syringe.
Goal: mL

