Southwest Wisconsin Technical College

Southwest © Tech

Dimensional Analysis in Nursing

Module 1.5

Drug Calculations - Tablets and Capsules

Table of Contents

Example 1.5.1, page 48
Example 1.5.2, page 49
Example 1.5.3, page 50
Practice Problems, page 51
Solutions to Practice Problems, pages 52 and 53

Noteworthy

- The key to doing routine drug calculation problems is to start your setup with doctor's orders.
- The drug label provides important equivalencies.

Example; " 250 mg tablets" can be thought of as, $\mathbf{1}$ tablet $=\mathbf{2 5 0} \mathbf{~ m g}$.

[^0]
Dimensional Analysis in Nursing

Module 1.5

Drug Calculations - Tablets and Capsules

Introduction

The dimensional analysis technique is used to convert from how a doctor thinks about medicine (usually mass - grams, milligrams, micrograms) into a measurement that makes sense for the nurse working with the patient (quantity of tablets or capsules).

Example 1.5.1

Prescription: Metoprolol 300 mg Inventory: Metoprolol 50 mg tablets
Quantity to give patient: \qquad

Begin by writing your goal to the far right of your work area. The goal reminds you of what units of measure you want to end up with. In this case, it is tablets.

Goal: tablets
Step 1 - Write doctor's orders in fractional form with a denominator of 1.
Continue Step 1 by writing a multiply symbol (x) and another fraction bar with the same units of

Doctor's
 Orders

Writing mg in the denominator
guarantees that $\mathbf{m g}$ will get
cancelled-out.

Goal: tablets

Step 2 - Since the medicine label has the same units of measure (mg) as doctor's orders we can
 Having pre-written mg in Step 1 makes it more apparent where this information should be located.

Showing cancellation is good form. Make this a habit!

Goal: tablets

Step 3 - We can compute the answer since tablets is the only unit of measure remaining and it matches our goal. Solve by multiplying the numerators together, then multiplying the denominators. Finish by dividing numerator by denominator.

$$
\frac{300 \mathrm{mg}}{1} \times \frac{1 \text { tablet }}{50 \mathrm{mg}}=\frac{300 \text { tablets }}{50}=6 \text { tablets }
$$

Answer!

Example 1.5.2

Prescription: Coumadin 10 mg
Inventory: Coumadin 4 mg tablets
Quantity to give patient: \qquad

The goal in this problem is to determine the quantity of tablets.
Goal: tablets

Step 1 - Write doctor's orders in fractional form with a denominator of 1.
Continue Step 1 by writing a multiply symbol (x) and another fraction bar with the same units of

Doctor's Orders

 measure in the denominator.

Goal: tablets

Step 2 - Since the medicine label has the same units of measure (mg) as doctor's orders, we can use that to convert from mg to tablets as shown. Think of " 4 mg tablets" as $\mathbf{4} \mathbf{~ m g = 1} \mathbf{1}$ tablet. Having pre-written mg in Step 1 makes it easier to tell where the information should be located.
$\frac{10 \mathrm{mg}}{1} \times \frac{1 \text { tablet }}{4 \mathrm{mg}}$
Goal: tablets

Step 3 - We can compute the answer since tablets is the only unit of measure remaining and it matches our goal.

Solve by multiplying the numerators together, then multiplying the denominators. Finish by dividing numerator by denominator.
$\frac{10 \mathrm{mg}}{1} \times \frac{1 \text { tablet }}{4 \mathrm{mg}}=\frac{10 \text { tablets }}{4}=2.5$ tablets
Answer!

Example 1.5.3

Prescription: Potassium Chloride (Extended Release Tablets) 80 mEq
Inventory: Potassium Chloride (Extended Release Tablets) 20 mEq tablets
Quantity to give patient: \qquad
Note: mEq is an abbreviation for "milliequivalent"*.

The goal in this problem is to compute the number of tablets.

Goal: tablets
Step 1 - Write doctor's orders in fractional form with a denominator of 1.
Continue Step 1 by writing a multiply symbol (\times) and another fraction bar with the same units of measure in the denominator.

Goal: tablets

Step 2 -The units of measure (mEq) in the doctor's orders match the units of measure on the available drug. Think of " 20 mEq tablets" as $\mathbf{2 0} \mathbf{~ m E q ~ = ~} \mathbf{1}$ tablet. Pre-labeling $m E q$ in the denominator helps you get the right information in the right spot

$$
\frac{80 \mathrm{mEq}}{1} \times \frac{1 \text { tablet }}{20 \mathrm{mEq}}
$$

Step 3 - The only unit of measure not cancelled is tablets. Since this matches the goal, multiply the numerators together, then multiply the denominators. Finish by dividing numerator by denominator.

$$
\frac{80 \mathrm{mEq}}{1} \times \frac{1 \text { tablet }}{20 \mathrm{mEq}}=\frac{80 \text { tablets }}{20}=4 \text { tablets }
$$

Answer!

[^1]
Practice Problems

Directions - For each problem, use dimensional analysis to determine the quantity of medicine required for the patient. Write your goal in the provided box. Your answers should include the appropriate units of measure.
1.) Prescription: Aspirin 4.5 g Inventory: Aspirin 3 g tablets Quantity to give patient: \qquad

Goal: \qquad
2.) Prescription: Thioridazine Hydrochloride 25 mg Inventory: Thioridazine Hydrochloride 10 mg tablets Quantity to give patient: \qquad

Goal: \qquad
3.) Prescription: Calcort 15 mg Inventory: Calcort 6 mg tablets
Quantity to give patient: \qquad
Goal: \qquad
4.) Prescription: Clinoril 250 mg Inventory: Clinoril 500 mg tablets Quantity to give patient: \qquad
Goal:
5.) Prescription: Potassium penicillin 600,000 units Inventory: Potassium penicillin 400,000 units tablets
Quantity to give patient: \qquad

Goal:

6.) Prescription: potassium chloride 16 mEq Inventory: potassium chloride 8 mEq tablets Quantity to give patient: \qquad

Goal:

Solutions to Practice Problems

1.) Prescription: Aspirin 4.5 g Inventory: Aspirin 3 g tablets
Quantity to give patient: \qquad
$\frac{4.5 \mathrm{~g}}{1} \times \frac{1 \text { tablet }}{3 \mathrm{~g}}=\frac{4.5 \text { tablets }}{3}=\mathbf{1 . 5}$ tablets
Goal: tablets
2.) Prescription: Thioridazine Hydrochloride 25 mg Inventory: Thioridazine Hydrochloride 10 mg tablets Quantity to give patient: \qquad
$\frac{25 \mathrm{mg}}{1} \times \frac{1 \text { tablet }}{10 \mathrm{mg}}=\frac{25 \text { tablets }}{10}=2.5$ tablets
3.) Prescription: Calcort 15 mg Inventory: Calcort 6 mg tablets Quantity to give patient: \qquad
$\frac{15 \mathrm{mg}}{1} \times \frac{1 \text { tablet }}{6 \mathrm{mg}}=\frac{15 \text { tablets }}{6}=2.5$ tablets
4.) Prescription: Clinoril 250 mg

Inventory: Clinoril 500 mg tablets
Quantity to give patient: \qquad
$\frac{250 \mathrm{mg}}{1} \times \frac{1 \text { tablet }}{500 \mathrm{mg}}=\frac{250 \text { tablets }}{500}=0.5$ tablet or $\frac{1}{2}$ tablet
Goal: tablets
5.) Prescription: Potassium penicillin 600,000 units Inventory: Potassium penicillin 400,000 units tablets
Quantity to give patient: \qquad
$\frac{600,000 \text { units }}{1} \times \frac{1 \text { tablet }}{400,000 \text { units }}=\frac{600,000 \text { tablets }}{400,000}=\mathbf{1 . 5}$ tablets
6.) Prescription: potassium chloride 16 mEq Inventory: potassium chloride 8 mEq tablets Quantity to give patient:
$\frac{16 \mathrm{mEq}}{1} \times \frac{1 \text { tablet }}{8 \mathrm{mEq}}=\frac{16 \text { tablets }}{8}=2$ tablets Goal: tablets

[^0]: Pete Esser
 Knox Learning Center Mathematics Instructor
 Contact: pesser@swtc.edu

[^1]: * Milliequivalents measure the drug's ability to react with electrons. Drugs such as potassium chloride (KCl), calcium gluconate, sodium bicarbonate, and sometimes even sodium chloride can be measured in milliequivalents.
 Source: http://www.cwladis.com/math104/lecture2.php

