Southwest Wisconsin Technical College

Southwest = Tech

Dimensional Analysis in Nursing

Module 1.1

Making General Measurement Conversions (Entry Level)

Table of Contents

Introduction, page 8
Example 1.1.1, page 9
Example 1.1.2, page 10
Example 1.1.3, page 11
Example 1.1.4, page 12
Practice Problems, pages 13 and 14
Solutions to Practice Problems, pages 15 and 16

Noteworthy

- Start your computational setup with the original measurement.
- Have a list of measurement equivalencies nearby when you are solving problems.
- Don't shortcut any of the dimensional analysis process. These are your safeguards to help avoid miscalculations when working with drugs.

Pete Esser

Knox Learning Center Mathematics Instructor
Contact: pesser@swtc.edu

Dimensional Analysis in Nursing

Module 1.1

Making General Measurement Conversions (Entry Level)

Introduction

Dimensional analysis is a problem-solving technique that can not only help you solve measurement conversion problems, but also a wide range of drug calculation problems ranging from basic to advanced.

General Measurement Conversions

In this module you will get your first chance to practice using the dimensional analysis technique. You will use the five elements of dimensional analysis covered in Module 1.0.

The calculations will be written following the plan established by Element 5, Module 1.0.

Original Measurement x Equivalency = New Measurement

The problems presented here are general measurement conversion problems. These will get you off to a good start learning dimensional analysis!

Measurement Equivalencies

Listed below is a small collection of measurement equivalencies that can be used to solve the problems presented in this module. You can find even more on page 1 of the Appendix.

Length	Weight and mass	Volume
1 foot = 12 inches	1 pound = 16 ounces	1 fluid ounce $=30$ milliliters
3 feet = 1 yard		1 gallon $=3.79$ liters (L)
	2.2 pounds = 1 kilogram (kg)	1 teaspoon $=5$ milliliters (mL)
1 inch $=2.54$ centimeters (cm)	1 ounce $=28$ grams (g)	1 tablespoon = 15 milliliters (mL)
1 yard $=0.914$ meters (m)	1 grain $=65$ milligrams (mg)* *Some instructors/schools use 1 grain $=60 \mathrm{mg}$	

Example 1.1.1

A patient weighs 18.6 pounds. Convert this to kilograms.

Round your answer to the nearest tenth.

Step 1 - Write the original measurement as a fraction with a denominator of 1
Continue Step 1 by writing a multiply symbol (\times) and another fraction bar with the same units of measure in the denominator.
$\frac{18.6 \text { pounds }}{1} \times \frac{}{\text { pounds }}$

> Writing pounds in the
> denominator guarantees that
> pounds will get cancelled-out.

Step 2 - Since the goal is to end up with kilograms, we will try to find a measurement equivalency that relates pounds and kilograms. From the table on page 8, we note that
2.2 pounds = 1 kilogram.

Where does each part of the equivalency go? Since pounds has already been written in the denominator, it is easy to decide that " 2.2 pounds" goes in the denominator while " 1 kilogram" belongs in the numerator. Crossing-out the eliminated units of measure verifies the correct placement of the information.

Indicate the removal of pounds by drawing a line through each.

Step 3 - We can now compute the answer because we have eliminated pounds and have introduced kilograms.

Solve by multiplying the numerators together, then multiplying the denominators.

Finish by dividing numerator by denominator. Round your answer to the nearest tenth.

$$
\frac{18.6 \text { pounds }}{1} \times \frac{1 \text { kilogram }}{2.2 \text { pounds }}=\frac{18.6 \text { kilograms }}{2.2}=8.454545 \ldots \text { pounds }=8.5 \text { pounds }
$$

Example 1.1.2

855 milliliters (mL) of fluid loss is equivalent to how many fluid ounces?

Round your answer to the nearest tenth.

Step 1 - Write the original measurement as a fraction with a denominator of 1
Continue Step 1 by writing a multiply symbol (\times) and another fraction bar with the same units of measure in the denominator.
$\frac{855 m L}{1} \times \frac{m L}{}$

$$
\begin{aligned}
& \text { Writing } m L \text { in the denominator } \\
& \text { guarantees that } \mathrm{mL} \text { will get } \\
& \text { cancelled-out. }
\end{aligned}
$$

Step 2 - Since the goal is to end up with fluid ounces, we will try to find a measurement equivalency that relates milliliters and fluid ounces. From the table on page 8, we note that
$\mathbf{1}$ fluid ounce $\mathbf{= 3 0} \mathbf{~ m i l l i l i t e r s}(\mathbf{m L})$.
Where does each part of the equivalency go? Since $m L$ has already been written in the denominator, it is easy to decide that " 30 mL " goes in the denominator while " 1 fluid ounce" belongs in the numerator. Crossing-out the eliminated units of measure verifies the correct placement of the information.

Step 3 - We can now compute the answer because we have eliminated milliliters (mL) and have introduced fluid ounces.

Solve by multiplying the numerators together, then multiplying the denominators.

Finish by dividing numerator by denominator. Round your answer to the nearest tenth.

$$
\frac{855 m L}{1} \times \frac{1 \text { fluid ounce }}{30 m L}=\frac{855 \text { fluid } \text { ounces }}{30}=\mathbf{2 8 . 5} \text { fluid ounces } \swarrow \quad \text { Answer! }
$$

Example 1.1.3

7.5 ounces is equal to how many pounds? Round your answer to the nearest tenth.

Step 1 - Write the original measurement as a fraction with a denominator of 1
Continue Step 1 by writing a multiply symbol (\times) and another fraction bar with the same units of measure in the denominator.

> Writing ounces in the
> denominator guarantees that
> ounces will get cancelled-out.

Step 2 - Since the goal is to end up with pounds, we will try to find a measurement equivalency that relates pounds and ounces. From the table on page 8 , we note that $\mathbf{1 6}$ ounces $\mathbf{= 1} \mathbf{~ p o u n d}$.

Where does each part of the equivalency go? Since ounces has already been written in the denominator, there is no guesswork in deciding that "16 ounces" goes in the denominator. "1 pound" belongs in the numerator. Crossing-out the eliminated units of measure verifies the correct placement of the information.
$\frac{7.5 \text { ounces }}{1} \times \frac{1 \text { pound }}{16 \text { ounces }}$

Step 3 - We can now compute the answer because we have eliminated ounces and have introduced pounds.

Solve by multiplying the numerators together, then multiplying the denominators.

Finish by dividing numerator by denominator. Round your answer to the nearest tenth.
$\frac{7.5 \text { ounces }}{1} \times \frac{1 \text { pound }}{16 \text { ounces }}=\frac{7.5 \text { fluid ounces }}{16}=\mathbf{0 . 4 6 8 7 5}$ pounds $=\mathbf{0 . 5}$ pounds

Example 1.1.4

5 grains of medicine is the same as \qquad milligrams? Round your answer to the nearest tenth.

Step 1 - Write the original measurement as a fraction with a denominator of 1
Continue Step 1 by writing a multiply symbol (\times) and another fraction bar with the same units of measure in the denominator.

$$
\begin{aligned}
& \text { Writing grains in the } \\
& \text { denominator guarantees that } \\
& \text { grains will get cancelled-out. }
\end{aligned}
$$

Step 2 - Since the goal is to end up with milligrams, we will try to find a measurement equivalency that relates grains and milligrams. From the table on page 8 , we note that $\mathbf{1}$ grain $=\mathbf{6 5}$ milligrams.

Where does each part of the equivalency go? Since grains has already been written in the denominator, it is apparent that "1 grain" goes in the denominator while " 65 milligrams" belongs in the numerator. Crossing-out the eliminated units of measure verifies the correct placement of the information.
$\frac{5 \text { grains }}{1} \times \frac{65 \mathrm{mg}}{1 \text { grain }}$

Step 3 - We can now compute the answer because we have eliminated grains and have introduced milligrams (mg).

Solve by multiplying the numerators together, then multiplying the denominators.

Finish by dividing numerator by denominator. Round your answer to the nearest tenth.
$\frac{5 \text { grains }}{1} \times \frac{65 \mathrm{mg}}{1 \text { grain }}=\frac{325 \mathrm{mg}}{1}=325 \mathrm{mg}$

Answer!

Practice Problems

Directions - For each problem, use dimensional analysis to convert each measurement to the required measurement. Round each answer to the nearest tenth.

Length	Weight and mass	Volume
1 foot $=12$ inches	1 pound $=16$ ounces	1 fluid ounce $=30$ milliliters
3 feet $=1$ yard		1 gallon $=3.79$ liters (L)
	2.2 pounds $=1$ kilogram (kg)	1 teaspoon $=5$ milliliters (mL)
1 inch $=2.54$ centimeters (cm)	1 ounce $=28$ grams (g)	1 tablespoon $=15$ milliliters (mL)
1 yard $=0.914$ meters (m)	1 grain $=65$ milligrams (mg)	

1.) Convert 8.4 kg (kilograms) to pounds.
2.) Convert 4.7 pounds to ounces.
3.) Convert 75 g (grams) to ounces.
4.) Convert 34 feet to yards.
5.) Convert 15 cm (centimeters) to inches
6.) Convert 400 mg (milligrams) to grains.
7.) Convert 20 mL (milliliters) to teaspoons.
8.) Convert 202 pounds to kilograms (kg).
9.) Convert 5.5 feet to inches.
10.) Convert 50 meters (m) to yards.
11.) Convert 1.5 tablespoons to milliliters (mL).
12. Convert 6.25 ounces to grams (g).
13.) Convert 0.75 grains to milligrams (mg).
14.) Convert 45 ounces to pounds.
15.) Convert 750 milliliters (mL) to fluid ounces.

Solutions to Practice Problems

1.) Convert 84 kg (kilograms) to pounds.
$\frac{8.4 \mathrm{~kg}}{1} \times \frac{2.2 \text { pounds }}{1 \mathrm{~kg}}=\frac{18.48 \text { pounds }}{1}=\mathbf{1 8 . 5}$ pounds
2.) Convert 4.7 pounds to ounces.
$\frac{4.7 \text { pounds }}{1} \times \frac{16 \text { ounces }}{1 \text { pound }}=\frac{75.2 \text { ounces }}{1}=75.2$ ounces
3.) Convert 75 g (grams) to ounces.
$\frac{75 g}{1} \times \frac{1 \text { ounce }}{28 g}=\frac{75 \text { ounces }}{28}=2.7$ ounces
4.) Convert 34 feet to yards.
$\frac{34 \mathrm{feet}}{1} \times \frac{1 \text { yard }}{3 \text { foot }}=\frac{34 \text { yards }}{3}=\mathbf{1 1 . 3} \mathbf{y a r d s}$
5.) Convert 15 cm (centimeters) to inches.
$\frac{15 \mathrm{~cm}}{1} \times \frac{1 \text { inch }}{2.54 \mathrm{~cm}}=\frac{15 \text { inches }}{2.54}=\mathbf{5 . 9}$ inches
6.) Convert 400 mg (milligrams) to grains.
$\frac{400 \mathrm{mg}}{1} \times \frac{1 \mathrm{grain}}{65 \mathrm{mg}}=\frac{400 \mathrm{grains}}{65}=6.2 \mathrm{grains}$
7.) Convert 20 mL (milliliters) to teaspoons.
$\frac{20 m L}{1} \times \frac{1 \text { teaspoon }}{5 m L}=\frac{20 \text { teaspoon }}{5}=4$ teaspoons
8.) Convert 202 pounds to kilograms (kg).
$\frac{202 \text { pounds }}{1} \times \frac{1 \mathrm{~kg}}{2.2 \text { pounds }}=\frac{202 \mathrm{~kg}}{2.2}=\mathbf{9 1 . 8} \mathbf{~ k g}$
9.) Convert 5.5 feet to inches.
$\frac{5.5 \mathrm{ft}}{1} \times \frac{12 \text { inches }}{1 \mathrm{ft}}=\frac{66 \text { inches }}{1}=\mathbf{6 6}$ inches
10.) Convert 50 meters (m) to yards.
$\frac{50 \mathrm{~m}}{1} \times \frac{1 \mathrm{yard}}{0.914 \mathrm{~m}}=\frac{50 \text { yards }}{0.914}=\mathbf{5 4 . 7} \boldsymbol{y}$ ards
11.) Convert 1.5 T (tablespoons) to milliliters (mL).
$\frac{1.5 T}{1} \times \frac{15 m L}{1 T}=\frac{22.5 m L}{1}=\mathbf{2 2 . 5} \boldsymbol{m L}$
12. Convert 6.25 ounces to grams (g).
$\frac{6.25 \text { ounces }}{1} \times \frac{28 \mathrm{~g}}{1 \text { ounce }}=\frac{175 \mathrm{~g}}{1}=\mathbf{1 7 5} \mathrm{g}$
13.) Convert 0.75 grains to milligrams (mg).
$\frac{0.75 \text { grains }}{1} \times \frac{65 \mathrm{mg}}{1 \text { grain }}=\frac{48.75 \mathrm{mg}}{1}=\mathbf{4 8 . 8 ~ \mathbf { m g }}$
14.) Convert 45 ounces to pounds.
$\frac{45 \text { ounces }}{1} \times \frac{1 \text { pound }}{16 \text { ounces }}=\frac{45 \text { ounces }}{16}=\mathbf{2 . 8}$ pounds
15.) Convert 750 milliliters (mL) to fluid ounces.
$\frac{750 m L}{1} \times \frac{1 \text { fluid ounce }}{30 m L}=\frac{750 \text { fluid ounces }}{30}=\mathbf{2 5}$ fluid ounces

