Southwest Wisconsin Technical College
 Southwest on Tech

Dimensional Analysis in Nursing

Module 1.0
Introduction to Dimensional Analysis

Table of Contents

Introduction, page 2
Examples 1.0.1, page 2
Example 1.0.2, page 2
Elements of Dimensional Analysis, pages 3 and 4
Example 1.0.1 revisited, page 5
Example 1.0.2 revisited, page 6
Having Confidence in your Work, page 6

Noteworthy

- Dimensional analysis is a problem-solving technique you can use throughout your nursing career.
- Equivalencies (ex. 1 pound $=2.2$ kilograms) are used to achieve the correct units of measure for any situation.
- It is a technique with several built-in computational safeguards.

Pete Esser

Knox Learning Center Mathematics Instructor
Contact: pesser@swtc.edu

Dimensional Analysis in Nursing

Module 1.0

Introduction to Dimensional Analysis

Welcome!

The purpose of this textbook is to help you learn a powerful problem-solving technique called dimensional analysis.

In nursing, you will primarily use dimensional analysis to solve drug calculation problems. The technique, when properly applied, will give you; confidence in your problem-solving ability, speed in your calculations, and accuracy in your answers.

Introduction

As in any technical discipline, you will encounter quantities expressed in units of measure that you find unsuitable for your purposes.

EXAMPLE 1.0.1

The scale you use to weigh patients only indicates pounds.
For charting purposes, you need to report kilograms.

How many kilograms?

EXAMPLE 1.0.2

The doctor communicates the amount of aspirin required in terms of milligrams.
To carry out the order, you need to know the correct quantity of tablets to give the patient.
$\frac{\text { Prescription }}{\mathrm{R} \text { Aspirin } 500 \mathrm{mg} \text { PO TID }}$

You can use dimensional analysis to solve these problems and ones that are much more complex. You will learn about the elements of dimensional analysis starting on the next page.

The Elements of Dimensional Analysis

Element 1 - Equivalencies

Equivalencies are statements like, $\mathbf{1}$ tablet $\mathbf{= \mathbf { 2 5 0 }}$ milligrams or $\mathbf{1}$ kilogram $\mathbf{= \mathbf { 2 } . 2}$ pounds.
Equivalencies are selected, then used in a computation to do two things;

1) Remove units of measure we don't want.
2) Introduce new units of measure that we do want.

Equivalencies come from:

1) Your own Memory

These usually come from past experience or are things your nursing instructor asks you to memorize.
2) Reference Tables

Here is an excerpt from Appendix 1.0 in this textbook:

Length	Weight and mass	Volume
1 foot $=12$ inches	1 pound $=16$ ounces	3 teaspoons $=1$ tablespoon
3 feet $=1$ yard		16 fluid ounces $=1$ pint
5280 feet $=1$ mile	2.2 pounds = 1 kilogram (kg)	2 pints $=1$ auart

3) Drug Labels

Every drug label has at least one equivalency displayed.

Element 2 - Fractions

Equivalencies used in dimensional analysis computations are always arranged in fractional form.

Such fractions are mathematically equal to 1 because the quantity in the numerator (top) is equal to the quantity in the denominator (bottom).

The equivalency $\mathbf{1} \mathbf{~ k g}=\mathbf{2 . 2} \mathbf{~ l b s}$ can be written as either $\frac{1 \mathrm{~kg}}{2.2 \mathrm{lbs}}$ or $\frac{\mathbf{2 . 2 ~ \mathbf { l b s }}}{\mathbf{1} \mathbf{~ k g}}$.
Both arrangements are equal to 1 .

Element 3 - Multiply by 1

Dimensional analysis relies on the fact that multiplying a quantity by 1 causes no harm.

$$
25 \text { milligrams x } 1 \text { = } 25 \text { milligrams }
$$

Literally using a 1 does not accomplish much!
Instead, we use something that is worth 1, namely an equivalency written as a fraction.

Element 4 - Cancellation

The objective in a dimensional analysis computation is to get rid of units of measure you don't want and replace them with units of measure that you do want.

This is done using the concept of cancellation. When multiplying fractions built from measurements, you can remove (cancel) units of measure that are on the diagonal from one another. Lines are drawn through the unit of measure that is removed.

$$
\frac{30 \mathrm{~kg}}{1} \times \frac{2.2 \mathrm{lbs}}{1 \mathrm{~kg}}=\frac{66 \mathrm{lbs}}{1}=\mathbf{6 6} \mathbf{~ l b s}
$$

Element 5 - The Big Picture

Any dimensional analysis computation can be summarized by:

```
Original Measurement x Equivalency = New Measurement
```

Using this statement along with the previous elements gives us the big picture of dimensional analysis:

First - You must start with the original measurement.
Second - You will multiply that measurement by an equivalency arranged as a fraction (which is mathematically worth 1). Depending upon the problem, you may need to use more than one equivalency.

Third - The equivalency must be arranged so that the units of measure you want to remove are located diagonally from one another. Lines are drawn through the eliminated units of measure to verify their removal.

Fourth - Your new measurement is computed by multiplying all the numerators together. Next, you will multiply the denominators together. Finally, these two results are divided; (numerator \div denominator) to achieve your final answer.

Let's solve Example 1.0.1

This will be a quick overview. The details will be taught starting in Module 1.1.

Convert a patient weight of 68 pounds to kilograms.

How many kilograms?

The calculation sequence shown below puts all of the dimensional elements to work:

(3)

Comments:

(1) We are starting with the original measurement, 68 pounds.
(2) We are multiplying the original measurement by the equivalency $\mathbf{1} \mathbf{k g}=\mathbf{2 . 2}$ pounds.
(3) Here we are demonstrating, by drawing lines, that pounds have been cancelled-out. This happens because 2.2 pounds is positioned on the diagonal from the original 68 pounds.
(4) This is the intermediate answer.

It is the result of multiplying the numerators, then multiplying the denominators.
(5) Here is the final answer!!

To get this, divide the numerator of the intermediate answer by the denominator.
In this case; $68 \mathrm{~kg} \div 2.2=\mathbf{3 0 . 9} \mathbf{~ k g}$

Let's solve Example 1.0.2

Once again, this will be an overview. Problems like this will be taught starting in Module 1.5.
Doctor's orders are, aspirin 500 mg . We have aspirin in $\mathbf{2 0 0} \mathbf{~ m g ~ t a b l e t s . ~ H o w ~ m a n y ~ t a b l e t s ~}$ will be given to the patient?

The calculation sequence shown below puts all of the elements reviewed together:

Comments:

(1) We are starting with the doctor's orders, $\mathbf{5 0 0} \mathbf{~ m g}$ (of aspirin).
(2) We are multiplying the original measurement by the equivalency $\mathbf{1}$ tablet $\mathbf{=} \mathbf{2 0 0} \mathbf{~ m g}$.
(3) Here we are demonstrating by drawing lines that milligrams (mg) have been cancelled-out. This happens because 200 mg is positioned on the diagonal from doctor's orders, 500 mg .
(4) This is the intermediate answer. It is the result of multiplying the numerators, then multiplying the denominators.
(5) Here is the final answer!!

To get this result, divide the numerator of the intermediate answer by the denominator. In this case; 500 tablets $\div 200=\mathbf{2 . 5}$ tablets

Confidence in Your Work

Taken as a whole, there are several computational safeguards built into the dimensional analysis process. These safeguards are part of the computational process, they aren't something extra that you need to learn. The end result is that you and your patients can have a high degree of confidence in your calculations. In Module 1.14 you will review these safeguards in detail and learn how to avoid commonly-encountered mistakes.

